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1. OBJECTIVES 
 
 The underlying idea on this research project is to introduce structural modifications at the 
micro and nano scales in order to generate periodic or regular modifications in the shape of 
magnetic materials that will result in the accumulation of surface magnetic charges. The dipolar 
interaction associated to such a distribution will traduce itself in a shape anisotropy. As stated 
previously, the control over the magnetic anisotropy will lead to a control of magnetoresisitve and 
even electromagnetic properties of materials. 
 
2. ANNUAL ACCOMPLISHMENTS 
  

 
In the period of this grant we have been working on several topics such as the classical and 
quantum theory of spin waves of magnets at the nanoscale; novel magnetic materials and 
interfaces; domain wall dynamics; and inter-element interactions. There are fundamental questions 
in these topics that we addressed, such as the effects of geometry and roughness on the reflection 
and transmission of spin waves on waveguides; mechanisms for controlling the anisotropy of 
nanometric samples; and the preparation of nano-elements with interesting and promising 
magnetic and transport properties by combining different techniques such as chemical synthesis, 
self-organized methods, sputtering, lithography and atomic layer deposition (ALD).  We also 
performed micromagnetic and Monte-Carlo simulations, using commercial codes and our own 
codes. In thin films, we have been working on the control of magnetic anisotropy in magnetic 
multilayers in order to obtain spin valves and enhance the magnetoresistance and Hall Effect. 
Magnetic multilayers and spin valves with perpendicular anisotropy can have promising 
applications as magnetic sensors, and one of the methods we are using to enhance the out-of-plane 
anisotropy is the deposition of the films on modulated substrates. We also started to perform e-
bean lithography in order to reduce the dimensions of the nanoelements, and then improve the 
performance of the systems aiming to possible sensor devices.      
 
Our group has supported the implementation of several new techniques of fabrication and 
characterization of magnetic nanostructures that position our group in a very good level, and with 
the advantage that we also have a very competitive group of theoretical researchers working very 
close to the laboratory. It is important to mention that this laboratory is the only one in our country 
in which it is possible to measure magnetic properties of particles at low temperatures and high 
fields. With the cryogen free VSM (Cryogenic LTD) that was installed in December of 2012, we 
undertake the characterization of magnetic materials in a wide range of temperatures (1.8 to 300 
K) and at high fields (up to 5 T).  The low temperature measurements of magnetic nanoparticles 
allowed us to determine the blocking temperature of superparamagnetic systems, and to evaluate 
the applicability of these systems in drug delivery.  
Structural characterizations have been possible since we acquired a SEM microscope in 2010. This 
microscope allows precise morphological analyses of the nano-elements synthesized by our group 
and provides services to other research groups. In 2014 we installed an EDS microanalysis system 
to the SEM microscope and we also installed an e-beam pattern generator for the SEM (NPGS), 
in order to make nanolithography. With e-beam lithography we will be able to pattern different 
nanostructures and characterize their electrical and magnetic properties.  
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A. Self organized arrays of antidots. 
We have investigated the magnetic properties of permalloy [Journal of Magnetism and 
Magnetic Materials 350, 88-93 (2014)] and cobalt [Journal of Physics D: Applied 
Physics 47, 335001 (2014)] magnetic antidot arrays with different hole sizes. Importantly, 
these articles considered the synthesis of antidots, morphological and magnetic 
characterization, and theoretical study by micromagnetic simulations. Indeed, in order to 
investigate the influence of the natural disorder of the net of holes, and the imperfections 
of the circularity of each hole, we have utilized three-dimensional modeling using the SEM 
image as a bitmap. The process consists of transforming a SEM image in a black and white 
image, which can be read for the OOMMF package.  

In a paper published in Journal of Physics D: Applied Physics 47, 335001 (2014), the 
magnetic properties of Co antidot arrays with different hole sizes fabricated by a template-
assisted method have been studied by means of first-order reversal curves (FORCs) and 
micromagnetic simulations. Hysteresis curves show a significant increase of the coercivity 
of the antidot arrays, as compared with their parent continuous film, which depends on the 
hole size introduced in the Co thin film. This effect is related to the reversibility of the 
magnetic domains during magnetization reversal, since due to the appearance of pores, 
domains may become trapped between them. On the other hand, micromagnetic 
simulations reveal that the presence of defects in the antidot lattice affects its magnetic 
properties.  

 

 
 
Figure 1. FORCs for antidot arrays with a pore diameter of (a) 20 nm, (b) 40 nm and (c) 60 nm, when the external 
field is applied parallel to the plane of the antidots. 

 
B. Magnetization reversal in special geometrical nanoelements. 

A detailed numerical analysis of the magnetization reversal processes in T-shaped 
nanoparticles has been carried out and the results are published in Applied Physics Letters 
104, 123102 (2014). Attention has been focused on the influence of the symmetry of the 
particle on the formation, propagation, and interaction of internal magnetic structures such 
as domain walls, vortices, and antivortices. Results show that the lower the degree of 
symmetry of the particle, the more complex the reversal process is. Thus, symmetry 
represents an additional ingredient to control the magnetic properties of ferromagnetic 
nanoparticles. 
The magnetization reversal mechanisms of small rings have been investigated as a function 
of the geometry [Journal of Applied Physics 115, 223903 (2014)]. Stepped and non-
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stepped hysteresis loops were obtained and four different reversal mechanisms were 
identified. In spite the important information that is possible to get from the hysteresis 
loops, in some cases it is not possible to identify from them the reversal mechanisms. 
However, susceptibility curves deliver enough information to determine precisely the 
reversal mode, making these curves a valuable tool for the study of the magnetization 
By means of Monte Carlo simulations we explore the reversal modes of rings with 
diameters smaller than 100 nm, dimensions that have not been systematically explored. In 
this regime, four reversal modes were obtained as a function of the geometry. These modes 
can be grouped in two categories. Two of them involve vortex formation (DWV and LV), 
and two does not generate vortices (DW and T). Also they can be classified according to 
whether they consider or not domain wall propagation. Again, two modes involve domain 
wall propagation (DWV and DW) and two do not include it (LV and T). These modes 
appear for different geometries. While thick rings prefer no wall formation modes, thin 
small rings prefer wall formation. Rings of medium thickness present all four reversal 
modes as a function of q. Some of these modes are not clearly distinguishable from the 
hysteresis loops, but their differences appear clearly in the susceptibility, making these 
curves serve as a tool that allows a clear identification of the reversal processes involved. 
 
 

           
 
Figure 2. (left) Magnetization and susceptibility curves in the neighborhood of the coercivity, for the 
external field applied along the y axis. The inset in Figure 2(a) shows the entire hysteresis curve. Points on 
the magnetization curve indicate the passage of the system through states in which the magnetization varies 
very rapidly. (right) Snapshots of the configuration of the magnetic moments at those stated indicated by 
dots in left Figure 2.The arrows denote two 90 and one 180 walls. 
 
It is important to mention that we can now fabricate these nanoelements by e-beam 
lithography and then observe experimentally the vortex states using MFM. 
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Student graduation: 
 
During 2015 the student Nicolás Vargas finished his PhD, and was working on the thesis 
under supervision of Dr. Denardin and Dr. Dora Altbir. He was working on the 
development of waveguides by lithography for the study of high frequency magnetic 
properties of arrays of nanowires. During this year the student Roberto Escobar also 
finished his PhD thesis under the supervision of Dr. Dora Altbir. His work is presented in 
topic B above. 
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